Estimate how much energy input by heating was transferred into the nitrogen.

Phase change liquid to vapor (constant volume)

Neglect air in containerfor energy calculations
Mostly vapor by volume
Mostly liquid by mass

$$
\begin{aligned}
& \text { Temperature }=77 \mathrm{~K} \\
& \text { Pressure }=1 \mathrm{~atm} \\
& \text { Volume }=2 \mathrm{~L}
\end{aligned}
$$

Mass of 50 ml of liquid nitrogen

$$
\mathrm{m}=\rho \mathrm{V}=(0.808 \mathrm{~g} / \mathrm{ml})(50 \mathrm{ml})=40.4 \text { grams }
$$

*Energy input by heating

$$
\mathrm{Q}_{1}=\mathrm{mL}_{\mathrm{v}}=(40.4 \mathrm{~g})(199 \mathrm{~J} / \mathrm{g})=8040 \mathrm{~J}
$$

Heating nitrogen vapor to $300 \mathrm{~K}\left(80^{\circ} \mathrm{F}\right)$

Temperature $=$ T, assume about 77K
Pressure = P
Volume $=2 \mathrm{~L}$

Temperature $=300 \mathrm{~K}$
Pressure increases
Volume $=2 \mathrm{~L}+$ a little (container expands)
*Energy input by heating (constant volume)

$$
\mathrm{Q}_{2}=\mathrm{mc}_{\mathrm{v}} \Delta \mathrm{~T}=(40.4 \mathrm{~g})(0.743 \mathrm{~J} / \mathrm{gK})(300 \mathrm{~K}-77 \mathrm{~K})=6700 \mathrm{~J}
$$

Estimate for total amount of energy input by heating $\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}=14,740 \mathrm{~J}$

About 15,000 J
*Approximations where made to simplify the calculations. The phase change did not occur under constant temperature or pressure. The heating of the nitrogen vapor starts at a higher temperature then 77 K . Also the specificheat at constant volume changes a bit with temperature The air in the contain was not considered in these energy calculations. Even with these approximations, I think the result of several thousand Joules is a good estimate.

